

Please write clearly in block capitals.	
Centre number	Candidate number
Surname	
Forename(s)	
Candidate signature	

A-level **MATHEMATICS**

Paper 2

Wednesday 13 June 2018

Morning

Time allowed: 2 hours

Materials

- You must have the AQA Formulae for A-level Mathematics booklet.
- You should have a graphical or scientific calculator that meets the requirements of the specification.

Instructions

- Use black ink or black ball-point pen. Pencil should only be used for drawing.
- Fill in the boxes at the top of this page.
- Answer all questions.
- You must answer each question in the space provided for that question.
 If you require extra space, use an AQA supplementary answer book; do not use the space provided for a different question.
- Show all necessary working; otherwise marks for method may be lost.
- Do all rough work in this book. Cross through any work that you do not want to be marked.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 100.

Advice

- Unless stated otherwise, you may quote formulae, without proof, from the booklet.
- You do not necessarily need to use all the space provided.

For Examiner's Use				
Question	Mark			
1				
2				
3				
4				
5				
6				
7				
8				
9				
10				
11				
12				
13				
14				
15				
16				
17				
TOTAL				

Section A

Answer all questions in the spaces provided.

1 Which of these statements is correct?

Tick one box.

[1 mark]

$$x = 2 \Rightarrow x^2 = 4$$

$$x^2 = 4 \Rightarrow x = 2$$

$$x^2 = 4 \Leftrightarrow x = 2$$

$$x^2 = 4 \Rightarrow x = -2$$

2 Find the coefficient of x^2 in the expansion of $(1 + 2x)^7$

Circle your answer.

[1 mark]

42

4

21

 $\begin{pmatrix} 7\\2 \end{pmatrix} \times 2^2 = 84$

3

3 The graph of $y = x^3$ is shown.

Do not write outside the

Find the total shaded area.

Circle your answer.

60

128

[1 mark]

$$\int_{0}^{4} x^{3} dx = \left[\frac{1}{4}x^{4}\right]_{0}^{4} = 64$$

$$\int_{-2}^{0} x^{3} dx = \left[\frac{1}{4}x^{4}\right]_{-2}^{0} = 0 - 4 = -4$$

The second value is negative because it is under the α axis. However, its area cannot be negative so its area is 4. Total area = 64 + 4 = 68

4 A curve, *C*, has equation $y = x^2 - 6x + k$, where *k* is a constant.

The equation $x^2 - 6x + k = 0$ has two distinct positive roots.

4 (a) Sketch C on the axes below.

[2 marks]

Do not	write
outside	the
ho	,

Find the range of possible values for k .						
Fully justify your answer. [4 mail	rks]					
The roots are distinct so the discriminant is greater than ze	<u>:0:</u>					
b2 - 4ac>0						
36 - 4(1)(K)>0						
36-4K70						
4K 4 3 6						
K L 9						
The roots are positive so k must also be greater than zero.						
So,						
0 L K L 9						
•						
	Fully justify your answer. [4 ma The roots are distinct so the discriminant is greater than the solution of the proof					

Turn over for the next question

Do not write outside the box	

5	Prove that 23 is a prime number. [2 marks]
	$\sqrt{23}$ \approx 4.8 so we need to check if 2 and 3 are factors.
	23 is odd so 2 is not a factor.
	23 is not a multiple of 3.
	So 23 is prime.

6	Find the coo	ordinates of th	e stationary	point of the	curve with	equation
•		namates of th	C Stationary	point of the	CUIVE WILLI	cquation

$$(x+y-2)^2 = e^y - 1$$

[7 marks]

$$(x+y-2)^2 = C^y - 1$$

Differentiate implicitly:
$$2(1 + \frac{dy}{dx})(x+y-2) = \frac{dy}{dx}e^{y}$$

$$x+y-2=0$$

So if we substitute this condition back into the original

equation we get

When y=0, x=2-y=2.

So the stationary point is (2,0).

7 A function f has domain \mathbb{R} and range $\{y \in \mathbb{R} : y \ge e\}$

The graph of y = f(x) is shown.

The gradient of the curve at the point (x, y) is given by $\frac{dy}{dx} = (x - 1)e^x$

Find an expression for f(x).

Fully justify your answer.

[8 marks]

$$\frac{dy}{dx} = (x-1)e^{x}$$

$$\int dy = \int (x-1)e^{x} dx$$

$$y = \int xe^{x} dx - \int e^{x} dx$$

$$y = xe^{x} - \int e^{x} dx - e^{x}$$

$$y = xe^{x} - e^{x} - e^{x} + c$$

$$y = xe^{x} - 2e^{x} + c$$

The range of f(x) is $y \ge e$. This means that the minimum point on the graph is at y = e, and $\frac{dy}{dx} = 0$ here because it is a stationary point.

So
$$\frac{dy}{dx} \Rightarrow (x-1)e^{x} = 0$$

$$\Rightarrow x-1 = 0$$

$$\Rightarrow x = 1$$
So the curve passes through the minimum point (1.e).

Note that now use these conditions to find the value for c:
$$y = xe^{x} - 2e^{x} + c$$

$$e = e - 2e + c$$

$$c = 2e$$
Therefore,
$$f(x) = xe^{x} - 2e^{x} + 2e$$
.

Turn over for the next question

8 (a)	Determine a sequence of transformations which maps the graph of $y = \sin x$ onto the graph of $y = \sqrt{3}\sin x - 3\cos x + 4$				
	Fully justify your answer. [7 marks]				
	Use the identity Rsin(x- x) = Rsinxcos x - Rsinxcosx.				
	Set $R\sin(x-\alpha) = \sqrt{3} \sin x - 3\cos x$.				
	$Rsinxcosd - Rsindcosx = \sqrt{3} sinx - 3cosx$				
	Rcosa = J3 Rsina = 3				
	Rsind = 3 Rcosd J3				
	$\frac{\Rightarrow \tan \alpha = \sqrt{3} \Rightarrow \alpha = \pi}{3}$				
	$\frac{R = \sqrt{3} = \sqrt{3} = \sqrt{3} = 2\sqrt{3}}{\cos \alpha \cos \frac{\pi}{3}} = \frac{1}{12}$				
	$So, \qquad \sqrt{3} \sin x - 3\cos x = 2\sqrt{3} \sin \left(x - \frac{\pi}{3}\right)$				
	This is a translation of $\frac{\mathbb{T}}{3}$ in the positive x direction: $\begin{pmatrix} \frac{\mathbb{T}}{3} \\ 0 \end{pmatrix}$				
	Followed by a stretch in the y direction of scale factor 2√3				
	Followed by a translation of 4 in the positive y direction: (0).				

8 (b) (i) Show that the least value of $\frac{1}{\sqrt{3}\sin x - 3\cos x + 4}$ is $\frac{2 - \sqrt{3}}{2}$

 $\frac{1}{\sqrt{3}\sin x - 3\cos x + 4} = \frac{1}{2\sqrt{3}\sin(x - \frac{\pi}{3}) + 4}$

This is smallest when the denominator is biggest, so when

 $\frac{\sin(x-\pi)=1:}{\frac{1}{2\sqrt{3}+4}}=$

$$\frac{\sqrt{3} + 4}{\sqrt{3} + 4} = \frac{2\sqrt{3} + 4}{2\sqrt{3} + 4} \times \frac{4 - 2\sqrt{3}}{4 - 2\sqrt{3}} = \frac{2 - \sqrt{3}}{2}$$

8 (b) (ii) Find the greatest value of $\frac{1}{\sqrt{3}\sin x - 3\cos x + 4}$

[1 mark]

[2 marks]

Now we want the denominator to be smallest, so let
$$\sin(x-\frac{\pi}{3})=-1$$
:
$$\frac{1}{-2\sqrt{3}+4} = \frac{1}{4-2\sqrt{3}} \times \frac{4+2\sqrt{3}}{4+2\sqrt{3}} = \frac{4+2\sqrt{3}}{4} = \frac{2+\sqrt{3}}{2}.$$

Turn over for the next question

9 A market trader notices that daily sales are dependent on two variables:

number of hours, t, after the stall opens

total sales, x, in pounds since the stall opened.

The trader models the rate of sales as directly proportional to $\frac{8-t}{x}$

After two hours the rate of sales is £72 per hour and total sales are £336

9 (a) Show that

$$x\frac{\mathrm{d}x}{\mathrm{d}t} = 4032(8-t)$$

[3 marks]

$$\frac{dx}{dt} \propto \frac{8-t}{x}$$

$$\frac{dx}{dt} = \frac{\kappa (8-t)}{\kappa}$$

At
$$t=2$$
, $\frac{dx}{dt} = 72$ and $x=336$:

$$\frac{72 = k(8-2)}{336} \implies 24192 = 6k \implies k = 4032$$

Therefore,
$$\frac{dx}{dt} = \frac{4032(8-t)}{x}$$
 \Rightarrow $\frac{dx}{dt} = \frac{4032(8-t)}{x}$.

9 (b) Hence, show that

$$x^2 = 4032t(16 - t)$$

[3 marks]

$$x dx = 4032(8-t) dt$$

$$\int x dx = 4032 \int (8-t) dt$$

$$\frac{1}{2}x^2 = 4032 \left(8t - \frac{t^2}{2}\right) + c$$

$$\chi^2 = 4032(16t - t^2) + C$$

At t=2, x=336:

$$336^2 = 4032(2)(16-2) + c$$

112896 = 112896 + C = C = C

Therefore, $x^2 = 4032t(16-t)$

Question 9 continues on the next page

- **9 (c)** The stall opens at 09.30.
- 9 (c) (i) The trader closes the stall when the rate of sales falls below £24 per hour.

Using the results in parts (a) and (b), calculate the earliest time that the trader closes the stall.

[6 marks]

We want to find the point when the rate becomes £24, so when
$$dx = 24$$
. Substitute this into the equation from a):

$$24x = 4032(8-t)$$

$$(168(8-1))^2 = 4032 + (16-1)$$

$$7(8-t)^2 = t(16-t)$$

$$t^2 - 16t + 56 = 0$$

$$\frac{-b^{\pm}\sqrt{b^2-4ac}}{2a} = \frac{16 \pm \sqrt{16^2-4(56)}}{2} = \frac{16 \pm \sqrt{32}}{2} = \frac{16 \pm 4\sqrt{2}}{2} = 8 \pm 2\sqrt{2}$$

So, E = 5.172... or E = 10.828...

The earliest time is when t=5.712.

This is 5 hours plus 0.172 × 60 = 10.29 minutes

So 5 hours 10 minutes

This is at 14:40.

Do not write
outside the

9 (c) (ii)	(ii) Explain why the model used by the trader is not valid at 09.30.				
	[2 marks]				
	As soon as the stall opens there are zero sales, so $x=0$.				
	dx is now undefined as the denominator is zero.				
	olt .				
	·				

Turn over for Section B

Turn over ▶

[1 mark]

Section B

Answer all questions in the spaces provided.

A garden snail moves in a straight line from rest to 1.28 cm s⁻¹, with a constant acceleration in 1.8 seconds.

Find the acceleration of the snail.

Circle your answer.

 $2.30\,\mathrm{m\,s^{-2}} \qquad 0.71\,\mathrm{m\,s^{-2}} \qquad 0.0071\,\mathrm{m\,s^{-2}} \qquad 0.023\,\mathrm{m\,s^{-2}}$ $1.28\,\mathrm{cm} = 0.0128\,\mathrm{m}$ acceleration = $\frac{0.0128}{1.8} = 0.0071\,\mathrm{m\,s^{-2}}$

11 A uniform rod, AB, has length 4 metres.

The rod is resting on a support at its midpoint *C*.

A particle of mass 4 kg is placed 0.6 metres to the left of C.

Another particle of mass $1.5 \, \text{kg}$ is placed x metres to the right of C, as shown.

The rod is balanced in equilibrium at C.

Find x.

Circle your answer.

1.8 m 1.5 m 1.75 m (1.6 m)

$$\frac{2.4}{1.5} = 1.6m$$

The graph below shows the velocity of an object moving in a straight line over a 20 second journey.

12 (a) Find the maximum magnitude of the acceleration of the object.

[1 mark]

The line is steepest from
$$12-13$$
 seconds.

The acceleration here is $-\frac{4}{1} = -4 \text{ ms}^{-2}$.

This line has a magnitude of 4 ms^{-2} .

12 (b) The object is at its starting position at times 0, t_1 and t_2 seconds.

Find t_1 and t_2

[4 marks]

It is back at its stationary position when the area above the x axis is equal to the area below.

At t=8, the area below is 4+1 and the area above is 4+1 so they are equal. Hence, $t_1=8$.

At b = 14.25, the area below is 4+1+2+5=12 and the area above is 1+4+6+1=12 so they are equal. Hence, b = 14.25.

13	In this question use $g=9.8\mathrm{ms^{-2}}$				
	A boy attempts to move a wooden crate of mass 20 kg along horizontal ground. The coefficient of friction between the crate and the ground is 0.85				
13 (a)	The boy applies a horizontal force of 150 N. Show that the crate remains stationary. [3 marks]				
	Fmax = MR = 0.85 x 20g = 166.6 N				
	So, he would need to apply at least 166.6N to the box to move it. Since 150 L 166.6, it will not move.				

[5 marks]

13 (b) Instead, the boy uses a handle to pull the crate forward. He exerts a force of 150 N, at an angle of 15° above the horizontal, as shown in the diagram.

Determine whether the crate remains stationary.

Fully justify your answer.

$$R(\uparrow)$$
: $R + 150 \sin 15 = 20g$

$$R = 20g - 150 \sin 15$$

$$R = 157.177$$

Horizontal	component	σf	his	force	=	150 cos 15
	1					
 					=	145N

145 > 133.6 so it will move.

A quadrilateral has vertices A, B, C and D with position vectors given by

$$\overrightarrow{OA} = \begin{bmatrix} 3 \\ 5 \\ 1 \end{bmatrix}, \overrightarrow{OB} = \begin{bmatrix} -1 \\ 2 \\ 7 \end{bmatrix}, \overrightarrow{OC} = \begin{bmatrix} 0 \\ 7 \\ 6 \end{bmatrix} \text{ and } \overrightarrow{OD} = \begin{bmatrix} 4 \\ 10 \\ 0 \end{bmatrix}$$

14 (a) Write down the vector \overrightarrow{AB}

[1 mark]

$$\frac{\overrightarrow{AB} = -\overrightarrow{OA} + \overrightarrow{OB}}{= -\begin{pmatrix} 3 \\ 5 \end{pmatrix} + \begin{pmatrix} -1 \\ 2 \\ 3 \end{pmatrix} = \begin{pmatrix} -4 \\ -3 \\ 6 \end{pmatrix}}$$

14 (b) Show that *ABCD* is a parallelogram, but not a rhombus.

[5 marks]

$$\overrightarrow{DC} = \overrightarrow{OC} - \overrightarrow{OD} = \begin{pmatrix} -4 \\ -3 \\ 6 \end{pmatrix}$$

$$\overrightarrow{AB} = \begin{pmatrix} -4 \\ -3 \\ 6 \end{pmatrix}$$
, from (a).

So we have two sets of parallel sides. If they are all the same length then it is a rhombus, otherwise it is a parallelogram.

$$|AB| = \sqrt{(-4)^2 + (-3)^2 + 6^2} = \sqrt{61}$$

$$|ADI = \sqrt{|^2 + 5^2 + (-1)^2} = \sqrt{27}$$

Since $\sqrt{61 \pm \sqrt{27}}$, it is not a rhombus, hence it is a parallelogram.

A driver is road-testing two minibuses, A and B, for a taxi company.

The performance of each minibus along a straight track is compared.

A flag is dropped to indicate the start of the test.

Each minibus starts from rest.

The acceleration in $m s^{-2}$ of each minibus is modelled as a function of time, t seconds, after the flag is dropped:

The acceleration of $A = 0.138 t^2$ The acceleration of $B = 0.024 t^3$

15 (a) Find the time taken for A to travel 100 metres.

Give your answer to four significant figures.

[4 marks]

Question 15 continues on the next page

15 (b)	The company decides to buy the minibus which travels 100 metres in the shortest
	time.

Determine which minibus should be bought.

[4 marks]

$$v = \int 0.024t^3 dt = 0.006t^4 + k$$

$$S = \int 0.006t^4 dt = 0.0012t^5 + k_2$$

At
$$t=0$$
, $s=0$: $0=0+k_2 \Rightarrow k_2=0$

$$S_0$$
, $S = 0.0012t^5$

The models assume that both minibuses start moving immediately when t=0In light of this, explain why the company may, in reality, make the wrong decision.

[1 mark]

The times are also dependent on the driving and reaction times of the drivers. Driver B could have a faster reaction time than Driver A, meaning B looks faster than it achally is.

16 In this question use $g = 9.81 \,\mathrm{m\,s^{-2}}$

A particle is projected with an initial speed u, at an angle of 35° above the horizontal. It lands at a point 10 metres vertically below its starting position.

The particle takes 1.5 seconds to reach the highest point of its trajectory.

16 (a) Find u.

[3 marks]

16 (b) Find the total time that the particle is in flight.

[3 marks]

$$S=Ut+\frac{1}{2}at^2$$

$$-10 = 14.715t + \frac{1}{2}(-9.81)t^{2}$$

$$E = \frac{14.715 \pm \sqrt{14.715^2 - 4(4.905)(-10)}}{2 \times 4.905}$$

A buggy is pulling a roller-skater, in a straight line along a horizontal road, by means of a connecting rope as shown in the diagram.

The combined mass of the buggy and driver is 410 kg A driving force of 300 N and a total resistance force of 140 N act on the buggy.

The mass of the roller-skater is 72 kg A total resistance force of *R* newtons acts on the roller-skater.

The buggy and the roller-skater have an acceleration of $0.2\,\mathrm{m\,s^{-2}}$

17 (a) (i) Find *R*.

[3 marks]

$$R \rightarrow 1: 300 - 140 - R = (410 + 72)(0.2)$$

Do not w	rit
outside	the
box	

17 (a) (ii)	Find the tension in the rope.		[3 marks]
	Look just at the roller-skater:		
	→> 0.2		
	63.6 ← O → T	T- 63.6 = 72 (0.2)	
	$\frac{63.6 \leftarrow \bigcirc \rightarrow \top}{72g}$	T = 14.4 + 63.6	
		T = 78 N	
17 (b)	State a necessary assumption that y	ou have made.	[1 mark]
	Rope is inextensible.		

Question 17 continues on the next page

17 (c) The roller-skater releases the rope at a point A, when she reaches a speed of $6 \,\mathrm{m\,s^{-1}}$ She continues to move forward, experiencing the same resistance force.

The driver notices a change in motion of the buggy, and brings it to rest at a distance of 20 m from A.

17 (c) (i) Determine whether the roller-skater will stop before reaching the stationary buggy.

Fully justify your answer.

[5 marks]

Using
$$F = ma$$
:
 $-63.6 = 72a$
 $-32g$
 $a = -0.8833...$

$$S = S$$
 $V^2 = U^2 + 2aS$
 $U = 6$
 $V = 0$
 $V = 0$

10.4 > 20	S٥	the	skater	does	not	stop	in	time	and	<u>Nits</u>	t he
						•					
buggy.											
005											

					27						
17 (c) (ii)	Explain the change in motion that the driver noticed. [2 marks]										o not write utside the box
	The	driver	lliw	start	accelero	ating	faster	because	there		
	UO	tension	in	the	rope.						
				END	OF QUES	TIONS					

